Almost perfect matchings in random uniform hypergraphs
نویسندگان
چکیده
منابع مشابه
Perfect matchings in random uniform hypergraphs
In the random k-uniform hypergraph Hk(n, p) on a vertex set V of size n, each subset of size k of V independently belongs to it with probability p. Motivated by a theorem of Erdős and Rényi [6] regarding when a random graph G(n, p) = H2(n, p) has a perfect matching, Schmidt and Shamir [14] essentially conjectured the following. Conjecture Let k|n for fixed k ≥ 3, and the expected degree d(n, p)...
متن کاملPerfect Matchings in Random r-regular, s-uniform Hypergraphs
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law. Perfect matchings in random i—regular, 5—uniform hypergraphs.
متن کاملPerfect matchings in 4-uniform hypergraphs
A perfect matching in a 4-uniform hypergraph is a subset of b4 c disjoint edges. We prove that if H is a sufficiently large 4-uniform hypergraph on n = 4k vertices such that every vertex belongs to more than ( n−1 3 ) − ( 3n/4 3 ) edges then H contains a perfect matching. This bound is tight and settles a conjecture of Hán, Person and Schacht.
متن کاملPacking perfect matchings in random hypergraphs
We introduce a new procedure for generating the binomial random graph/hypergraph models, referred to as online sprinkling. As an illustrative application of this method, we show that for any fixed integer k ≥ 3, the binomial k-uniform random hypergraph H n,p contains N := (1 − o(1)) ( n−1 k−1 ) p edge-disjoint perfect matchings, provided p ≥ log C n nk−1 , where C := C(k) is an integer dependin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1997
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(96)00310-x